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Foreword

This report is submitted as part of Contract AF33(038)-9832,
which was administered by the eronautical Research Laboratory,
Wright Air Development Center, under RDO No. 465-1, Aerodynamics
of Compressible Fluids, with Mr. Lee S. Wasserman acting.as project
engineer, The work reported was done at the Graduate School of
| Aeronautical Engineering at Cornell University during 1950.

The investigation is based on the author's thesis (Reference 3)
and on a paper by Professor W.R. Sears and the author (Reference 6).
Here the work is extended and is put into more usable form.

The author wishes to acknowledge the assistance of both,
Professor W.R. Sears for supervising the work and Mr. H.K. Cheng
for carefully checking the formulas and carrying out the tedious

computation work.
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Abstract

Linearized supersonic-Flow theory is employed
to evéluafe the 1lift and drag of biplane cellales havihg
the "Busemann-biplane" configuration. The lift and drag
are explicitly expressed es functions of the thickness ratio
and the angle of attack; the coefficients involved are
universal for all Busemann biplane. Interpfetation of
the results for various Mach numbers is afforded by a
similarity rule.

Most of the results are presented graphically.
It is found that the wave drag due to thickness of'finite—

span Busemann biplanes is small:

Publication Review
Tﬁe publication of this report does not constitute
approvai by the Air Force of the findings or thebconclusions
" contained therein. It is published only for the exchange and
stimulation of ideas. |

FOR THE COLIMANDER:

Chief, ieronautical Research Laboratory
Directorate of Research
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Introduction

A study of the linearized equation of motion of supér—
sonic flow, with the irelocity potent.ial ¢ as dependent
variable, reveals that the differential equation is of hyper-
bolic type. As is well known, a Cauchy's boundary value
problem is _theh properly set if initial data over an open
surface ;l.s given, This is exactly the case with a supersonic
wing. Thus, following the exhaustive study by J. Hadamard, by
using the singular funda.mental solution, introducing 't.hé notion

of finite part of an improper integral, and generalizing the

- Green's formula to a space with non-positive-definite metric,

a solution for the differential system is obtained which bears
exactly the same relation to the distributed boundary value as
the potential to its corresponding source distribution in
Dirichletts problem in the elliptic case. Accordingly, thé terms
".supe:psonic source™ and "supersonic distance" were in’orodﬁcedo

‘Further investigation of the problem shows that ;ne can

always introduce a fictitious plane separating the retrogressive

characteristic cone, so that by suitably distributing the

| boundary value on the two surfaces of the plane, two distinect -

solutions can be obtained for the two separated regions; Thus
the introduction of a diaphragm and the exclusive use 'of source

distribution for the determination of potential, following Evvard,

WADC TR 52-276



can be justified. The detailed proofs of this "supersonic
" source-=distribution theory" are successively developed in
Refse 1y 24 30

Thus, the study of supersonic wings resolves itself
essentially into the same study of the potential due to plane
supersonic source distributions,

In the linearized theory, the Risemamm hiplane arrange-
mert becomes the one shown in Fige 1, iecey the top and bottom
surfaces are flat, the leading-edge Mach wave of either wing
intersects the other wing at mid-chord, and the airfoil slopes
are related by the formulas, for x > ¢/2

V,'1x) = =53 (x- 5)
Yot = -y (x-%)

The typical case is then simply fhat of two isosceles triangles
pointing at each other.

In this investigation, the Busemann relationship between
gap, chord, and Mach angles shown in Fig, 1 will be assumed,
but it will not be nedes_sary to specify the shape of the profile
in deriving some general results. It will be shown that the
velocity potential, including all interaction effects, can be
calculated by means of integrations involving the wing surface
slopes only. The general results will be applied to the
mumerical evaluation of the wave 1ift and drag coefficients of

the typical Busemamn arrangement having triangular wing sectionse

WADC TR 52-276 —o-
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This investigation, conducted at Cornell University, was

(1]

sponsored by Aeronautical Research Laboratory, Wright Air

Development Center, Wright-Patterson Air Force Base, Ohio
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Notation
Goordinates
Cartesian x. 7.2, 3,19,5
Mach Uy Vig2 5 m, V35
U uniform free stream velocity in x -direction
¢  disturbance velocity potenmtial

P, pressure, density ( p. , f, for free stream)

M  free-stream Mach number

ye P12 -1

C, pressure coefficient

= normal

o local slope of wing surface in flow direction
A 1§cal slope of diaphragm in flow direction

%  supersonic source intensity

4 wedge angle -

2o chord

2b span

c gap = 4/

S integration area over surface being considered

S’ integration area over interacting surface of other wing
Subsériptss

7. 8 top and bottom surface

w,? upper and lower wing

I,7 of wing and of diaphragm

WADC -TR - 52-276
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PART I. THEORY

A, THECRY OF SUPERSONIC BIPLANE

(1)
(2)
(3)
(L)

Formila for Source Distributior
Calculation of Diaphragm Distribution
Solution of Integral Equation

Calculation of the Potential

Be SIMILARITY RULE FOR TIP FLOW

(1)

(2)

(3)
(L)

Conical and Pseudo Conical Flow
Case of Busemarnn Biplane
Similarity Rule

Remarks

PART IT. APPLICATION

A. POTENTIAL, LIFT AND DRAG

(1)
(2)

Potential

Lift and Drag

B, COMPUTATIONS

(1)
@)
(3)

(L)
(5)

General Form of Velocity Potential
Lift and Drag in Terms of Potentials
Consequente of Similarity Rules

Lift, Drag Coefficiemt, and L/D Ratio

Computation of / and D .

Co RESULTS AND CONCLUSION
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PART I, THEORY
A. THEORY OF SUPERSONIC BIFLANE

Fofnnﬂ.as for Source Distributions

The equation satisfied by the disturbance velocity
potential @ in the linearized theory is

/J,‘z?é(x - ¢77 - 9532, =0 Bz Moy ’ (1)

where subscripts denote partial differentiation with respect to
the rectangular Cartesian coordinates = 4 7 4 2 o Here ™M
denctes the free-stream Mach number, and the coordinate x is
taken in the direction of the undisturbed stream. If ﬁas been
‘assumed in deriving Eq. (1) ghat #, , ‘45‘7 R ‘and ¢, arve small
compared to the stream spéed, U o A consistent approximate

formila for the pressure coefficient is

/b‘Fo

Cp:f/’oU2 =~2¢X/U (2)

where 4, , £ are the pressure and density of the undisturbed
stream,

An elementary solution of Eq. (1) is the so-called super-

sonic source, ¢ /x, 7,2) = /_/X—3)2-/82(7—Q)2

- Bicz-35)r ] , provided that the value zero
is taken outside of the Mach cone that originates at the point

5 979 5 o For brevity,'we shall adopt the following

notation: )

/U(Z) [{X_§)Z_F)(y_yjz_/z'xzz]‘/z

i

WADC IR 52-276
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~and 1oﬁer surfaces of 2 monoplane winge

Tt is well knom (Refs. 2, 3) that a continuous distribution J

of these singularities over a surface parallelto the flow yields

a solution satisfying Eqe. (1) and the bounda.ry' condition 2% A=
on the surface. Moreover, Evvard (Ref. L) has shown how a .
distribution of these sources over a i‘ictifious diaphragm at

a wing tip can be used to account for the interaction of upper

We shall adopt Evvard's scheme here for the calculation

of tip effects for both upper and lower wings, placing a diaphragm

at each wing tip and introducing the conditions that these

diaphragms are stream Burfaces of thé flowe. The potential at

points on the top (7) and bottom (B)surfaces of the upper (w)

 wings is given by

P (g = - {AZ«JT/”‘D A8 A (3)
Bra /%) == Bue 245 = [ Burpicros
(L)

and there are analogous formulas for the lower (()wing. The |
areas of integraf.ion S » on the wing under consideration,
and S’ on the other wing, are shown in Fig, 2,

Now the integrations over portions of .§ and .§' can be
simplified immediately by use of monoplane results. First of
all, it is clear that, in all areas unaffected by biplane inter—
action, the wing=-surface boundary condition requires iha‘b L= Uo/n

‘where g~ is the slope of the wing profile in the X direction.

WADC -TR 52=-276




Moreover, Evvard has shown, that fao monoplanes - and therefore
for biplane regions unaffected by interwing interaction - the
integration over the diaphragm can be replaced by another
iﬁtegration over part of the wing. For any point forward of
mid-chord, i.e., x < a , there can be no bipla'.ne interaction,
hence it is conveniept to write the relatively simple expressions
for these points before going on to treat the interacting regions.

. X £ & 3 no biplane interaction: Here monoplane results are

applicable. For both upper and lower wings, we have

/0’ Hro)ds ——/

453 /x,j).z———/o- /u/o)dg _F 0‘1-0—5/4/0)0@ (6)
Sz,

¢, (%7 T ptor oS (5)

X > A ; We consider now a point on the upper wing, top
surfaces If the point lies forward of the Mach line from the
tip mid-chord (outside of area A/ in Fig, 3), there is again t
no biplane interference and Eqse. (5) and (6) apply. For a point
in A , however, there exists an effect of the lower wing, ~j

transmitted through the interaction regions of the tip diaphragno

We can write
¢ />( ;)———-/O:,T/J/o)aj‘_—-f Ay plolas )

Here, and in subsegquent formulas, we dende by A (3, 1) the

slopes of the tip diaphragms of upper and lower wingse. Thﬁs,

WADC TR 52-276
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for any poiﬁt on the top of the upper=-wing diaphragm, Z“T"

is equal to U Au /rt s and this value has been used in

eq. (7). In regions unaffected by biplane interaction (e.g.

for §<a )y A(32,7) is the same as for a monoplane

and Evvard's results will be used for such regions. Inb inter-
acting regions )\ is still unknowm , of course; its determination
constiéutes the main problem of this investipation. We shall
postpone this to the next section, after writing an ahaf_l.ogous
formla for points on the bottom surface of the upper wing.

All points of the bottom surface of the upper wing,

for which X > @& are affected by biplane interactions
Let 5, and (7 denote the areas of the lower wing and its
diaphragm that affect the point (2, »#) . The wing-surface

boundary condition is

s
48

gue /X/;) '/_”l BC//OZT/I(C)GIS +//\L }'4(()0’5\] = B/X/;) (8)

This is an explicit formmla for Z“B tx, ),
involving only known quantities. It may be noted that in the
region S, , 7., has been put equal to UV A./n
- Moreover, heré /\,_ is a monoplane value unaffected by bipla.ﬁe |
interference, and is therefore known- froﬁ Evvard's work, We now
héve ' |

¢u3/7('7) = ‘.{:rf?;’ﬁﬂ/b) a5

- _fdzrﬂ(c)d,_\" ——[)\L/J/C)dy ' (9)
. . fﬂ .
WADC TR 52276




where [,z in JS; is knomn from Eq. (8) and AL in S7
is known from monoplane theory., HAgain the calculation of the
diaphragm source distribution, 7., in Sz 5 is postponed
to the next section.

For the lower wing there are formulas exactly analogous

to Egs. (7), (8) and (9), which will not be written out here.

2+ Calculation of Diaphragm Distributions

| The conditions that insure that the tip diaphragms will be
stream surfaces are the conditlions of equal slope and equal pressure
on top and bottom. Since, as Evvard has pointed out (Ref, 5), the
diaphragms of a rectangular wing tip are not vortex sheets, equal
pressures imply equal values of 75 s the perturbation velocity

potential, We have, then, in region Sz ,

24, I
'a‘f—=72,_6 and 9= %5 (10)

The first of these eguations leads to

Ui 12.3) = Furt.7) (11)

= 713”(-7)——552[] _r/ucc)dff-f,\‘-/u(c)dy]
Sa

WADC -TR 52-276
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The second Eqe (10) states that, in Sz ,

* _ _U_ r/u/c\)df - —z{ /\aﬂ(O)dS

i»

= —/ Fup p(IdS - —-'/0'27-/4((:)6/5' ——[/\L/u(c)d,i‘ (12)

szfn -{‘ﬂ'

where fua im Sy and J}Zvis given by Egs. (8) and (11),
respectively. We have now an integral equation for the diaphragm
slope )\u, ¢ for poimts X , ¥ in Sz,

?/Auﬂzo)d? )'( s u,_)/myoi‘(" JY L HledAS +{A /u(c)dj
BN E)

___//»HQ) /—/O"LT/A(L)OIS‘+/AL//(€)0/I’]04S

Jz*fy x

ey

There is an analogous equation for A, , which will not be
written out,
Eqe (13)‘ is to be satisfied for all points x , ¥ on
the upper-wing diaphragm. For some areas, there is no biplane
-~ interaction, i.eo, f'.l.' and S vanish, so that the second
and third integrals on the right side of Eq. (13) disappear. It

is clear that for these points the third integral vanishes as well,

WADC TR 52-276




since S, and Sz do not contain any points ¥ , 7 affected by
interaction. Consequently, for non-interacting points x , )
Eqe (13) reduces to Evvard's integral equation for the diaphragm

slope of a monoplane (Ref. li).

3¢ Solution of the Integral Equation

Eqo (13) can be written in the form

A t0)al = F (x,
'4n “/ - (1)

for points x , # in Sy 9 where 2 F,(x. z) denotes the entire
right-hand side of Eq. (13), and involves only known functions. We
now introduce the new coordinates, « ,v measured aléng the two

families of Mach lines on the wing in question:

u = %(3 +£7) =f;:(5—/57)
5=%(u+|/j =35 [u-v)
- |22 00 _ 28
T = | St A2
2 z 1 252 -//z
Mz) = [ (x-3)% - prg-o-pr2t] 15)
-
=—F—{{u. —) (V- u)—M‘Z/} =
Our integral equation now takes the form
/\(M V)O(l/'
= i, V5
/ LA = pl ) 09

for poimts «,, v; in Sz .

WADC- TR 52=-276
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The solution can now be found by means of the following

processs
u’ u’ U,
- F/ul/w)dq/ _ A, / au //{[M,V) v
o Jaul-at, Ao Jueu, )y Jala ), S E

_/ oA, / Mk, V) du .
o Saa L T e i
o

_ a7)
= 77/ H i, v;)da :
g
Differentiating this result with respect to «’, we have
- A )

2 [“Flu,v) / ‘Al -

—, L oy, = T A

2u ) ’u'—u, \/l/,—(/ (18)

Al

' We now multiply both sides of Eqe (18) by '/ /- v,
integrate with respect to v, , and exchange order of integration

in a ma.nnerv similar to that just employed. The result is

WADC TR 52276
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which implies (dropping the primes)

MI/V;) u, d v,
(20)

This solution can be used to calculate the slopes A in
regions of interaction. This completes Eqs (7) for 75u7. s and,
by use of Eqe (11), also completes Eqe. (9) for Pug . Eqe (20)
constitutes a generalization of Evvard's expression for the tip-
diaphrag_m slopey, to which, in fact, it immediately reduces when

«¢ 4 v lie in a region free of biplane interaction.

Lo Calculation of the Potential

Although the biplane problem is now cqmpletely solved in
principle, the straightforward calculation of ¢ , especially
for regions of biplane interference, by substitution in Egs. (7)
and (9), is extremely tedious, Fortunately, as will now be shown,
it is possible ‘o eliminate entirely the integration involving ) ,,
in these two formulas.

In both Eyse (7) and (9), the term involving A im

vy
fA ,wo)ds = -i ud.::/ j“_“;”'l‘f ov (1)
] / -

A

where now 4, , \; lie in region J;

WADC TR 52-276
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We return to Eqe (13), which holds for points in .S"a,
and write it in the form

“, . '
au o m ’
[ Griwm) = 255 ¢ (e v) 22)
where
Dl (s - g
“ M)dev /[ (Tup-Tur)dv_ /[ AV 2 i,
Gla, ) ‘/ JVi-v Z/ Jo-v - 2V JZNLW"‘"’)
“ -2A -A . .
(23)
U
¢(u,,u*) = - f,_,ﬂcc)d.f' +fAz/4/°)0/S'}
Sy Sa’
(2k)
Actually, @’is the potential contributed at -4, , ¥ by the
lower winge.
The solution of Eqe (22) can be written down :meedlately
| (Refo 6), VJ.ZO’
«
_ M o [ g,
o
(25)

WADC TR 52276



Since Eqe (22) is correct only for points 4, 4 V; in Sz =
iewy for «¢, € V; - we must restrict <« in Eq, (25) as
indicated.
Now for the points outside of the interaction region, i.es, >
for «’ & M2c® /g, the interaction potential ¢ 7u!v;)
is zeros Thus G (<« v;)  is also zero for «< ~'¢*/av;

We can now consider an integral :anolv:lng G (., V7) 3 Leeey

a/u a’«
s,V k) = [ == v;) = v;
J( 2 ) ) mG{“, /) J, - ax CT(M/ :)
4
M"c"/m,;

where < £ «, °

If A< Vv, also, (r(«, V7 )can be taken from Eqo (25):

[73
2 ¢/(""-I;V7)olq’
.[(M,)/;IC)"_"“‘/ /_~u—u ﬁ/m )
M /g, M gy, ¢
oM / ‘
/¢(u d‘)/q ,c/’r = u,-u o(u 26)
Mc/4u- A

after some manipulation.# Recalling the meaning of G (a«, v;)

(Eqs (23)), we can write Eq. (26) as

# Refs 3, po 36-L0,

WADC TR 52=276
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(

)

s .
du A (UIV)d(f: - A7 ¢1/ R -’ / 1 'l
of/J/(,-M M J VU, =V 2U u’w) Ays it e’ U, -u” of u

>, 2
MY

2’ f ol U (GZB ar)du/ 2{_.;3_ , (27)
/ Ju JU‘ v ,/,,/;,.L/Bc,qb/’('l“l/j

" Since the only restrictions on Eq, (27) are k < A, ’
and kHt & VY s it is exactly the result we need for
Eq. (21), inwhich  k & v € <, .
We are now prepared to write complete expressions for the \
potential on top and bot1';om surfaces of the upper wing, by
substitution in Egs. (7) and (9)s Let S I; be the portion of

Sz for which w < , as indicated in Fige 3; then
95 Ufa.. ,o)d‘p_,_g/(a— _d‘) to)d§
UT‘/Q///)= - 7—7- g UT/'(' 27 -f‘I Z U7 ﬂ
. _ z ’ ° _

L poSTEu,as

an J‘Io _f__r\a

+-—/4S(u U?)/u Yl . uf;la,_:w/aml- (28)

lc /4‘,.
?Sus/“'])':‘;q/ g M0dS -—/ M —¢/44,V')df
’ . J\ .l' +fz
U FIY
.__[(a;g_o;,)/u/o}df + 5= ,wo) 2 ¢t )a s
" f fI.fJ"H
- ——-]75/(,( )J [v-,—w - w]d“’
‘<1/4lf ' (29)
WADC TR 52-276
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Formulas (28) and (29) permit the calculation of the
potential, and consequently the pressure distribution, on the
biplane. It is seen that, whereas we have succeeded in eliminating
the integrals involving A, , for the upper wing, we are left with
integrals involving A, , to be taken over certain interaction-free
arease In fact, if interplane interaction of a higher order were
eﬁcountei'ed? such as an area of the lower wing influenced by
interacting regions of the upper wing, it would always be possible
to eliminate the )\ integral expressing the last stage of tip
interactione

WADC TR 52-276
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B. SIMILARITY RULE FOR SUPERSONIC BIPLANE THEQRY

(1) Conical and Pseudo-comical Flow Field

It is well known that the flow field in the tip region of s
a supersonic flat rectangular wing is conical, If insf.ead of
being flat, we have, denoting by o the surface slope along flow
direction x , that C(x 2Z2) = o (=) only = i.ee,

along each chord station ¢ = constant, the surface slope is

spanwise constant - then we have, in place of a conical flow field,

a flow field which is "pseudo-comicals® Thus, denoting by ¢ the |

disturbance velocity potential, the conical flow field will be

? =”“é(£7(£) | . (1)

characterized by

while the "pseudo-conical®™ flow field will be characterized by

f‘=*ﬂf(§jf%) (2)

where 2 = /22—, M = free stream Mach ﬁumber.

While the conical flow field finds great:pplication in the
monoplane supersonic wing theory, it will be shown that a r.ectangu—v
lar supersonic biplane flow consists in addition, in the inter-
action region, of a "pseudo-conical" flow fielde Thus the success
of developing a Bipla.ne wing theory depends much on the existence
of the latter type flow. |

WADC TR 52-276



(2) Case of Busemann Biplane

Let us take a Busemam biplane, and follow the result and
notation of Part I where the potential at amy point (Xx. ¥ ) of

upper wing top and bottom surface respectively are given as

followsa
¢u7-/7’/ = - —-/O" /u/o)a'.S7 - —-/( -o;r)/u/o)d.f'
/*{fo) Cf/(u,tr)q"j‘_
277 fla"fg
4 ¢’/u,v~), UI[ - ol u!
2/6/4 .”V"’“' “’“'] (3)
I o ‘
-I-E%/J( ~)f(fo)a'.f' + _//"“’)ac‘ibfu wal
J‘Zoff_a )
V-u
/¢/u V)/u H,/V ara, w]:/u + 55{“/‘7)
MC‘/4V.I
in which
U-'“T:: - 0:3 = -
0—1,(6—'01.,.—- o+ 4& X < a.

= —o/+d X > a

WADC TR 52-276
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It was shown in Ref, 3 that

a) ¢ UOLTZ _ U(O’»? LT)[
' w P / AT T (Sa)
Uy /7 Lt Y- ’%—/ “i+Vy
5, =-2| "z ftav,) _,u,»fx/ m»
LMy ) - M () + MY J
2 "’WL_ U/ (Vi) > v rmtc
m—— Yt - L1, 1V,
2Ju, v -mCrg — 5 M'____z._’_._.._
_Z'l:_ S, ~v)E F1CR .
u,+VY o M.~V .- - v (VRS
E___l . :/___ - ;) 2V, ‘L(u, Vi 4-1*1”&_.;] I
lu, +‘/I) M\C\" 4/(‘4,{. L/I)I_M\(\_
_ prc _;_T — gt W= L= MCE R ) —v,)‘u/-m‘_f_L 1
\- 2 Jtupu) rasela, -v,+ Jla i)Frircr }
~ h Y iy
+ - ‘44{‘///‘"/)—"16/2- _ !,_[ H,(H,—V})-;-Mﬂ('/;_ ‘;
U S, - are A Jrd v miend
. : ]
e g !
— SV (,—v) - # 6/2 + v, \//M/—\/I)L-/-M\(\— , 4

Using the relation
“"1="Ai/x+lﬂ ) W:ﬂfx—ﬁ)
2 7 24 7
YR ) ) 2/&

/'T/ =L uvd | = A
: e

MZ) = [xosyi-pr(7-00"-p22"]
= ZA(%[//‘Y,-—M)/V*,-V“) —MxZ:‘/4]_ 2

(5a) can be put in form

fi= B2 (4, 8)+sh (5. 2)] O

¢, U '
b) 52 = 7 [0—47[3 +(°—LB‘6ZT)I4] ' (6a)
2 * -
¥ w -7 U'll-—‘ Vi
= Z + Aas
]3 2 2rme,fuv;— mrcr/q , o
+ - ~yp S
7 = (__r{__-qlu,—\/;)u,-a-/\»r‘c /2 e (it )L :46{21
4 z USlu-v)*>+r1ve™ “UrJ(dgpVp T = rie
’ -l F-v,) - M(’—-!-f“/‘f-ul)j(“’ Vi) P e >
AN RS
2 ‘ ,.//44,1~u,)7- mr c‘-[/"/-'//+,,//u,~u,) F ML
4 _rMe R R O
L Ml ~vi) o mre™ Yo=Y F S ~v,) 25 pre - /
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(6a) can be pu.t in form
W ULgLa k)] ®

2¢ T “ «u

vy M g
. / uo—x/ﬁmg-;e; ‘ﬁq-—(g\—)] "(" (1- &)

T2 d Uax - i
:/ bi(/ _‘Tp "ﬁ C‘ﬂ/, "(/“_ T aje

ﬁ/ o f ! X (1= 3%)

T x (/- az) A
g gl |
AL SN SN IR

(72) can be put in form

_’_TL{fO‘/M/a)o/,S’: g—;{[ujr(él,})+d'f‘6(¥,;ﬁ)] (7)

v o)
77—/:/‘ _O-)/J/)dj

_ U(%B-Gr), /x-;y/,, 7 a1
27 7 Jix-DF-prlg-0)t

u(o’a—ozrg,[f"/‘_,ﬁdj /‘f” (L2 )‘,,3]

o;
! Z7 s %5 I
vf?, _ (% Gir), (ﬁ’ ok B +A«~'f—’—’ z k7 ]
27
¢ -2 .//—?— +27(a««/;—;; - ——’—'(/~’37

- 27,p /(0;5 0;7.) / _743 "(a;a"aar)/ /[,;]djj

¥ Ref. 3. Appendix 5.
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Ullug- Q},-)/ éy-f /97“»'2"'2(‘ - f/~§)/w:';%—a?)

J"f
— ﬁy - )((,- az o~ éﬂ |
Ny e S 20"

-2 _g,(h—gy_,/—;-éj) ..,L z/b';l/f::';_—'—l -&Q’j%ﬂ_,)

so (8a) again be put in form

_2%4[@3’@”/4/0”& ["(f‘ (52 3) +<fj{ ( XJ' ’ﬁ‘)]

Now by (6b) »
s (G C)a/u
0 au" = = /
f'zfifn T / / M) tu, -u)[ur v)

v (Y TF(E, ) alE) v [TEG (Y, A
-74]“ “ - “)

“u
' Jd,- “\[V/_‘_l_/ Y _ Y
- (%}

. vy v
"

15(44 Mc/"_:ﬁ_/_’zj_;’;é /)V_:E)
;anf[ﬁz |

so (6a) takes the form

———f(o" a*,,)/«/o)f Fx/o(j ('z’j)+d’f {X,xj

r°4fj

Moreover,
v, -

/ ?‘/u lf,) U, -V, V',-u'
o Uv, ,
=2 [Tp o ",37)in'_[ "z
U/ vy . u! 1; Y |
5 2ot 5 20555
but ? -
v _ P B _ Z‘—éf Z(

N N Ma

= G xl- )
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Vi
/

[ #ten) [225 (- ) = ety () 54,8.2] )

Vv e
v, [ EOde U (Ve G 6
= — | o« = au
n Yo Ay MJlaTolv ) TMIe ) Jama [B Y

“

H s——
_uvi [RG(Z ) Al
Mmmn S, i _ o«

= X E2 ay (10a)

(102) can be put in form

pY X
}l{/f(,,,);‘-fdr - %/dﬁ/ (518) 8¢ (4, 3)j (10)
Jr+ hy
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substitﬁting (5),(6)y (7)y (8), (9), and (10) into‘(3) and

(4), we see that
foing) =2 b (B 8| e pes) @

and

by =5 de(E, 2] acw, £5) .

t =/, 2. 3,2k genotes regions of interaction, which

is actually a "pseudo conical® flow field.

3¢ Similarity Bule

It is seen from above that in eqe (11), (12): for x<a ,
d/)( term does not occur, so flow field is conical, for x>,
“—/x‘ terms occur, so flow field is "pseﬁdo conicdl " However,
for both regions, the same similarity muile holds, i.ce:
"For different values of Mach number, 2% /5, differs by a
constant factor /3 , provided the ratios B/x and 2/x
are maintained constante."
This constiﬁutes a "similarity rule" for supersonic
flow at different Mach numbers., It leads directly to ‘the determina-
tion of a Mach mumber correction factor for converting the biplane

property calculated at one Mach number into that at other Mach

numberse




Expressing our similarity rule in terms of (, , we have

~

for X = ¥rz » Im=3575

(12)
To evaluate the correction factor for 1ift and drag over
wing tip region surface, since o o
/ = fngfgago/x = —ﬁU/{P(za)d;‘ - - PUZe ffl /)é;)d;;ftﬁﬁfg:&@/;)
D = ‘/"Ucf/??}—a(z¢/a)—¢/24))d/ = 4—%’2—[{53/0//{)

we obtain: , (llt)
Z/ /D =214E)D‘/z

Thus, in Part II, below,it will be found that at zero
incidence, AM=J/z, Cp, = 9.823J° /4 . It follows that
at any other Mach number

C 0. 823 d*
e R | (15)

e Remarks

It might be noted that the above Similarity Rule is not

' limited to bi-~plane application only. The same holds for delta

wings as long as the leading edges lie either outside of Mach cons

or in flow direction, and U = o rx) . However, as soon as the
leading edge goes inside the Mach cone, the Similarity Rule ceases

to holde Indeed, even in the simple case of conical flow, it is

e.asily. seen that Tschaplygin's transformation will give for each

Mach number an independent boundary condition for the Laplace equation,

which mich complicates the problem,
WADC TR 52276 —26
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PART IT. APPLICATION
A, POTENTIAL, LIFT AND DRAG
(1) Potenmbial

With the Similarity Rule established, the study of
supersonic biplans is greatly simplified, Indeed, the only com—
putation needed will be for the case of M = JZ . Forv alt

, other Mach numbers, the required conversion relat.ionship will be
furnished by this Similarity Bule.

Using the general expression for potential de;rived above,

we have
u = f r HDAS - = f(C’Za- L) feod A
—""/ /t([D) o/j‘ 7‘—2? f,,,/u u‘)/ /{/‘ u’ u,- /dq
\—C\/ V-
v
5{'8— - H@/«/o)df -5 ,Wo) }‘-’5“ +2,,ff ua—w)fm)df
2) oPu/ I | | ,
//"f a’f‘——/%/(urj f“’/‘r S /9/417‘ ;,/
Zo" z Y g ™ ”
Yy == 2 Trr2 00 =3 [ )03 - L [ i
JSr 1y dz, ‘
{ 3¢Ldr __Z Vi / / ‘//--44 7 ‘ { /
f/z o) 53 2”/ Ol ) | = e u,»w\/d‘” + @
ZotJp : ML
' I
U
m="77f073/"0)0’f ff ia - u)/@ !
z
oH! [vi-u
_/\/”0) 4-¢ ¢/ﬂ 2 U, ~ lf/[V’ "7 ‘(,-‘t’]aq,
j}a"fa \‘744/'
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where it is understood that &7, 2#/. and §’come in only
where the interaction is effecteds By carrying out the integra-

tion as given in Ref. 3, we have

U (Jeg-9cr)
— 1,
~M7
U (Tp -97)
— 1,
™M
./(a, u)(u,—«)-u < Vg
of u

Ygp VG ot M1~

2 N AN

_/ AT -
L =

UJdur
M
_ UJ—NB
M7T

—_ - [’./.

7544, =
qu/

'I - 2[/”J(u,-u){¢f

A1+ Y7 7 M 7
z = 2

I -

u) ~mie "/4
o

M
<

'/‘,/u,,/‘- +

r

P L Ml A ) =M s w27
2 2~

2

tLr-Vy
2.

o Jlat, Vi) = MC™

-] w, +Vy

McC

V1= ) pme

2

t =] Ae,- V3

v (M) + Y
U S~ + e ™

L, + V7

Uit VG

(T rad
(Hyph) ™= 21,

o Ul + UI)‘M\C‘/Z
US> ag e

- M
2

:.gl
Jeat,~ )%+ 11~

o) e /2

' “:[[//"
U, Jlatr- V)~ + e~

I ) M ‘cvid

X[ lat, ~ 4]V -2)
L, - 4 .

/oa

cf»f /

-rMc Mg / Mff/a -
olu + ‘

)

“ Ay

/(u,+u,}*: mre™

Vit~ )+ 117>
4 a2 ~Jlu,-vi )+ me

- A, M e ) SO ) S

*
At e -

S, 4030 -

2

+ (=) Ur{u, #1) - m'¢ /2
4(, M\C‘—

S/t l//)\..

J(u.fw)“-M"c\[u,-—s/ +//q,~v,) A1 \-_7
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()~v) >y tpre™

P
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Tip region potential of a symmetric wing for

. ) U .
(1) 70/._._7.;./7-//(0)015’
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(Appendix 54 Ref. 3)

X < @
(2) U
(fa:—'ﬁ'éo./”o)df ““—“/ //4/0)0/7‘11’0‘]
i
=~ 7)) [ Fes vy
X > A

x4y 7o ) X
(b) C&““‘ /df vfjod? -UaGy [/, /adﬁ

X

4
- B L b5 2003 - o) 0

x-f xf
(c) 9ﬂ =" */dj’/d”//@a'f vord + 7 p/f//c" G;)/Jla/d? +U(6-%)Y
-—-—? St o L+ "”// 82 21y v
£e |
_—.-ﬂ—f; '!6—- ”]_;- 7.;.3:],/5..1/0:;

where by Appendix 52 Ref. 3

x-f7
(1) ][w'ﬁr 3]4E = py ot 7% T oxaid EE 4 D ix-2py)
2 ~t -
@ HM"’Z Ljds = [Ty pyectz |+ Za

xRy A7 -
(3) 4.,,‘;"(5 + T JdF = (1) = (2)

= —-/x-z/’;) + /,\/-&1.),44».l 2 + A7 M":; - 216{,

WADC ‘TR:52-276 ~ -30-

o



when '4——»0

/ v o;
. (a) X<o- 90“':-__%_;_7’(:"2,—5_)(
! v U,y JaL Y,
(b) ¢b=—i’1’%g po"(a -x) - ‘6—0‘()([10.0)”_—_E._"?L:q___/g_i(_ﬁ_’_a_(a;._q1
‘ @ $=-7a ?7;; i?z/x a) = - /J," ~ T (0-0)
Gt _ZZ_,{ (O -Ty) /4/0)01[7
fre v, x-p# ”-*’-;
— ¥ =5, (% ‘")/ //x—_?) pzf;a)
a;. __Li
N )// ”’é’ ()] 42
2 /b i’
:‘2_7-77( a; wr) .[ ‘
B (524 4
b): =-—_li/a:; -0y ) o 9
2n &2 T Z/ 3 A//*‘f)‘—'ﬁ‘/yoj"
U Ry
_" ~Our. as
* 50 q)// /,,,,D e
& = _z_gz UB- uT)z[) 2'7"'8(0;8— “7-)// ‘[Z_
-
Z, /[ EE - ey ()] A2
= X A & + BY M";
+2xiam/,47 —z\//,y];:?;»z_ﬂ.x |
-1 X~A4
[7.:' 7(4";:"5,’(2 ‘f'ﬁ;uvl"’p’; l;v—a,)w'ﬁ—j lgyw»é 7?
+ 2 (m ﬁ—% -/ “/&l«;l / %‘I) _2’//81(‘/)('[&3 ..._/;-a_/;a)

—awi(FE 1)

¥Appendix 5. Check pe 115,116 Rer, ;
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(2) Lift and Drag

With the velocity potential determined, it remains a
simple matter to compute the pressure coefficient, 1lift and

drage By the linearized theory, the pressure coefficienmt is

given as ap _  2u 2 2P
C/b_':i//oay.z_— U - U X

The total 1lift and drag over a surface are obtained from
the Cp distribution by simple integration
L= pozU7CP a§
D = ﬂ’TUl _/ CpodS

With linearized theory, the lift computation can further

‘be simplified to the following form, which és especially useful
when curved surfaces are involved:
£ =88 quyn = 2 -2) [
== £ U/JQﬁ/.?a) a4y
In case the wing has an isoceles triangular or "diamond"

profile, since the constant surface slope can be taken out of the
integral sign, the determination of drag simplifies to the
following form . 7 :
D __/3_;{2//(,, Tdxd] = ’%;f(-t-});f [#)}- ¢/:"/d;
= - POU{/7[:¢/qJ_<p/;a)]d;

For a miltiplane system, with projected area ,{ in

plan form, the 1ift and drag coefficients of the system are obtained

as followss C = /Z("’)Lv/n-c/’df
« - J

| s [..& qar
Cp = 7
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Bo COMPUTATION AND RESULTS

_Q;z General Forms of Velocity Potential

The potential at a point /x %) or (« v) in region O of

the upper wing is

Py = i | Tor 'o>45~—/(<r;3~ Gr)pt10) 43 T
)i [ w1 - /fl !
“on 41'“10& o+ /¢u o’ v)"/‘/1 v;[v AP A/ %Cl/ ("
¢ M\t/4V| /- D
Fo= = ) Toa 15 - A #1o 3y

z"/f{a‘:ﬁ Ty M5+ 5 Ty /‘“"’

J:of o

l
! /o V/-U/[ /I ’] ’ A !
2,,/ Prs o) fa (o - 1+ e

m ‘C%ul

{/

In fact, (l.1) and 1.2) are general forms of the
potential in all regionse In region ( , the poimt /x.4) or («,v

considered is beyond the influence of the rear half diaphragm,

%4/‘“")\/ ::/V U dy-ur, /d“

vam.shes in passing from region_D to ¢ 4, and remains nil on the

rest of the wing surfaces Further, since %—% differs from zero

and so the temm

only for 3 >a on the wing and «v~> ’l;—f—l on diaphragm, the

2 2%’
2rr/ H® S AL
J}offu_

integral
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goes to zero as (x, 7) goes to the hyperbolic boundary separating

regions 2 and C o In fact, in all the regions 4, B, C it

contributes nothing, as the effective area for if"/ in S5, +Jy

disappearse On the other hand, the integral

/ of.!
:‘F/ M Jc i)
.FIY‘J‘U

-Z/ pro)d
n )

in regions A, B, Co In the regions A and B, i.e., those areas

degenerates to

2.,
> 45

forward of the hyperbolic wuv = a*c/4 , the effect of the tip
region of the neighbouring surface cannot be felt and the amytic
expressions for the integrals are available,

There is a difference in the surface slope o for the region
S<a and 3 >a , but the formulas (1.1) and (1.2) remain true.

In region &, the tip effect of the supersonic monoplane
disappears, the flow reduces to that of a two-dimensional Busemann
biplane,

The structure of the-present theory is based on the iinearized
theory of potential flowe As a consequence, the potential will be
linear in the angle of attack o/ , and the thicknmess ratio <, in

the form

()

Yr= 00w+ 2 5 (1.3)

=) _ (4
fngz qp«a PX T we * ¢ (1.4)
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For the same pofmt (x,7)on the lower wing, similarly, we have

ey ()
59LT= - uc‘d'f’~¢qa'{ (1,5)
L (0/) (d)
¢AB - %Jr_ ol F %/7' x2 (1.6)

(2) Lift and Drag in Terms of Potentials

In the linearized theory, as shown before, we have

/fj X,

it =[]y = g H’/ L e
O fpy=foal iy =« fed Lo+ 7ol e

ivh_ere the (+) sign stands for top surface and the (=) sign for

‘bottom surfacee

With the distribution of U, in the Busemann bJ.pJane,

0lx< a aAc<x<2a
Ter = =024 -t -
Tur . &+ & X - d (203)
Tor -x+d -o -4

and noting that ¢(,) = 0  , we have

Luz, /P = 0('/ qﬂuf”rz oy J'f ¢u[:—;24)9/j

Lus,cv /pU = —of. fcp‘[,;)/za)dj F a’-f %3 r2a) d;

'DM?‘, LB/PU = /%T /2")0/’ + o(J'-fcp(r)/z,,) a9 (2.1)
Dug,e7foy = ~¥ .fqou (20) 09 — J%j[z 1/ ta) - 92 (20)] 77

F o(cr/[: o - ?’,3 (24) + ‘f’g f““]”?
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The total lift and drag of the biplane becomes

Z/;épu = 0('/[¢u(:—l)/24) - %;Z}/Za)]d;

Dfrpy = o(“/[ %fi)/za) - 7’“{;}{24)]4; (2.5)
ot fl/[ %g)/za) —2‘7’,,,?{47)] oy
] = -z’ﬂv” (2.6)
L/#Q - [[Z ¢u7./24)—-—?f,ﬁfza)]d; o
7 o [ [ 2 90‘“/(2,,.) -z 2 120)) 4 )
+ J‘/[U Y2ey = 22 @ J ] 77 (2.8)

3e__Consequence of Similarity Rules

a, Lift and Drag over the Tip Region
From the Similarity Rule for the tip flow of a Busemann

biplane

7 Uiy = ff‘,'/—fv L2, o, 5)

and since & and J can be separaed, we have

0 /7) )i y
A /xf:/)=ff- 4,4
(3.1)

where 7 = ¥ 4

1= wuT, UuB, LT, L3,
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Introducing S = £7 /54 s We obtain

(X,

—_ / (% /
Ley= ¥ (20 [2,,(45) ~Fus (2.0 s

= Q./.gi")‘.z
Doy = KA [ St e DT

D = /fjﬂ,gf’ 3) - ﬂ,b/(/,s)]dﬁ

™

- 4" /;/T“f)ug(

-—

(3.2)

(33)

(3.L)

where / and E are universal constants for all Busemann biplanese

be Lift and Drag for Off-Tip Region

Beyond the tip region, the flow is two dimensional,

7 ) ma T (4) . Ta
U¢UB (4)-—-15 U%{Bla)——-ﬂ;—r
T () a
.5”%«3 (22 = o 7 Ps (2a4) = - %
a1 p@) = T a7 o = a
o Py (200 2a ] 7 9., (2a)
and we have
_Z ("(/ ( (°‘) . ZTTQ
U%T /;26!) —-(}- un r2a) = /5
T (d

(67
_%'I_?gwﬁ (0) =
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Iet / o4  denote the lift of half biplane system

beyond the tip,
b
= _ r 27
Lotp = 7@ ./7_9[2_-)#;
A

- 4o 272 - 24y,
_W&.ﬂ,/é p)o(

= & (24 ((2pR —4) o
F (348)

Doff = & (2. (2F4?- 4)-0*1
s ' (3.9)

where &R = 4 /0.

(4) Lift Coefficient, Drag Coefficient, and L/D Ratio
In view of (3.3) and (3.5), the total lift and drag of a

biplane is
- (_z/gg)%@. (FpR-8+2L). o (Lel)

2 (Do + Dt‘ya)

(72‘7“:)2‘ 6(-[(4/;42_54-2[_—).011+ 25.67(11.2)

v
I

Il

Defining the 1lift and drag coefficient based on the

projected area of the biplané

( — .[JD
L,p b
. tasQ 13)
. / . —
ve get CL'/}IAZ[4%/42+2L—8]
(L)
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Al

o ;/ST/A—?[/“/K/?f-ZZ-ﬁ)'o/l—r 25'cf1] (L5)
and . |
/Dzo/_/ D ) g2
(T amii-s (Z) (ke6)

(5) Computation of 7/ and D .

As shown in (3);,

.7 . 3 = 7 (o) ‘ () ’
/. = 7;/- g—"/oﬁ[g 9@7 (2a) — g 726 /za)]dj . (5.1)
- (5)
N m [ s (2> T 2 Byq ()] 7 (5.2)
Setting . 2=/, 4 =/0 ,we have
— 24 '
T - o [ 2 A s - R 200
| (5.3)
~ (5)
2 =/oo71f[U u/3 [2a) ~ U (/0)]
| (54)
Let -/fa*m/ua)o/f = = Ay + AT
-?i_ffz{az{g- UT)/V(o)a’_(‘ = Bo(»o{ -+ /33—5-
l——{" P! =TV - Tgd
| g s = [ ) ], (76
Sz + 8
/,uroﬂéf j S LT ] /[ (;a-) I (ss)
0’* I fofﬁ
. ]lf -y’
/C/qu(/l) /L"(/ /,,{/ “__)! d\*//_JJ"
M /ey, »
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where all the coefficients of o and J are functions of (X. ¥) o
Through (5¢1), the general forms of potential (1.1) and

(1.2) become respectively
Cer = [FAvEl 7 ] (] e fIR)]
#6524 [0 - /2By - ——/f 1741 5= fir]] 66

5 g™ %G [ Bt Tt [ R [ 1R 5

"J'ff/ﬁ/”d'+ﬁ3f‘7f‘%—f/f{?’] ()
. s
L. fr / .
Sl 11 ]
For regions C and (&), , we have

. ,
U u7‘=70(',/§é [ﬁAO‘ —‘/25“]—/.['/-51[0-/355] (5.8)

_U”_ P s = d.l/-/zf}w/z‘ﬁa ] s i/fAJﬁ/‘Bf ]
Jz L/ -4
f];( +n//_{'[L] ]-J /_/ ,f_TJ_/ (5o9)
I

For.region (A),, the tip effect becomes nil, so

Z Zo= o Ay + &0 (5.10)

Ty AT +f/4f 3

o Ps & (5.11
fj £ J] w1 ] |
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For region (8 4 which differs from (5);, by a difference in
surface slope and by the absence of interaction between

surfaces, we have

5%7= o [Ay -Bx] + 5 [0-B4s]

(5.12)
K — o [opy +By ] + & [-AT+Bs]
A (5.13)
For region (A),
—&_7’79/“7 = of- /4(,( + do (5,1)4)
g‘%"@ = D(‘,/—A"Q/J-f' J[’ASJ
| | (5.15)

In fact, the coefficients Ausy Oy Ju 9 Ads Bys Js

as well as the integrals

j;':—;‘//_‘\z; Ta'} and ﬁ—-';"T fszfxr’}
can all be analytically evaluateds Therefore the potentials
in region A and 2 can be put in purdy analytic form
?g _ 55(“.}o< . 75@){
For the rest of the integrals

f{r 1777, /ff/]’], 'f[jl-}l (4= o, J)

t'
7 *fﬂ Io**-rﬂ
nmumexical computation and graphical integration becomes necessarys.

AL

ok
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(541) Computation of ‘f— T @ (for region D and C )

The potential contributed by the neighbouring surface is

%’/__7_2[{//;?7/4(00/5' 'f/‘/“//\Lf//C)dfj (5.16)

where ) , is the monoplane value given by (Refo 3):

Ay layvy = 22 O—T(/T - fom /f—“) (5.17)

Putting

[, = .M/fr/lwfc)dj'

I, =~ ?Aﬁ/ffw(jz—: ) M’f}’j) ! (5418)
Thus

_;_ g = - qT—-Af,L + (95—, % (5419)

.7,%pbelong to forward half of the wing, so

gand A=/ 4 we have

Here the qua.ntlties
that, with G_L“‘T:-o( +d 02/3-‘-‘){

_ 7

Vz 5 S == (-o+d)I, +(20-4) 17,
:(I"’zrz)'d"(l,*za)'f (5.20)
= Jo ™ = Tqo o

By Appendix 4, ReT 3 <
. U, +Vy -1 »‘-(/-V- ‘4/— ) u, Vv,
J/ = 2 (l—f-m“/”'*‘/) -mTe™ > M\//“"VI) Yfrre™
_MC (gt it 2" ot Aeslh,-vr) T2 1(5421)
Ay la,-v)* 3 pice

2 H/j/“”_v’)\-_M1<l
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Ay

3

Oy Lemordix l, Rele 23
_ Mmrct M, -U; - Uy V;
-Zz = 2,Ju, v - 3 - == wv{ -
2 Vi, ~v)* mrc~
) R —— {7 . 231%
M [, ae = A 25 =) vy e e
+ 7 - + +M
Jewtragmer T Tyt e
Arc ot AV PR ) [t =) pe

_ - Z T A P ——
Z / z A/(ﬂ(,fVl)‘-M\t"[l-h—Vl+\//M,-V/J\fM‘C\:]

I e A R (5.22)
Ui e 4 v =™ At (et~ ) N ppg ™

“«/v”?/“/-"/) =ML, A+ V- ) mre

Note that the limiting value of &, ’goes to zero along
the hyperbolic boundary « w.—."’—qz"oﬁ‘ the wing and thus ¢, 'is
contimous across the hyperbolae On the other branch of the

hyperbola on the wing, #,’satisfies the relation (Bef. 3 Appendix L)

az, U4
%':—?/_"—B/w‘,&) == ur) + UG

A

which, in fact, is the expression for the potential ¥,for region A
and 2« These remarks serve as a check to the nmumerical computa—-
tions. |

Since in region C 4 D and over the diaphragm the expression
for ¢,/ is complicated, we carry out the computations mumerically
for points in these regions. >As %,’only enters into the integra~
tion over the regions extended by ‘l:,he inverse Mach coney, we need
only compute for points bounded by the hyperbola « v = met/a,
the trailing edge of wing and the inverse Mach line on the dia~-
phragm extending from trailing edge tipe Henoe; using 2=/,

a = ¢ = /0 , the range of computation will be as followss
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m v =350
v: 2.5,3,3%5 4,5,6,7,9.71,,3
K ,7,.8.9,70.11,12,/3,04,5,/7,.19,2/,22,23,24

Our computation starts with a chosen v~ (say = L), and pro~-

ceeds with the formulas (5.21), (5.22) in computing /, and 7, for

a range of A o

Fige L &5 present the results for J, and I, . Fig.

6, 7 give J, (uy,vyand Jp(4,v)e

For the sake of convenience, we use the principal brapch

in the idemtity

cod " = hon (i JTT)

for determining cotf 7/ u.

7 24!
(6e2) Computation of & 2c (for region Dand C )
ar 9¢u Z — ..2.
7 3 = —Ez/fi‘:_7/x/c)dj’ 57 ffn{\"/““)dr (5.23)
= Ys1 + (T -001, (5.24)
=_]o//'°/+JJI‘3’ (5-25)
where T =7'->71.’7
« =L -2L (5 .26)
Jg = 7,"- 1,
By Appendix 3. Ref. 3:
/T -] AUE=
4, = 2 7 /tM 2me Ju v, - ML (5.27)
7 ‘1 [4_7 _ :—[/u/—\/?)ll,‘i'/"]"é‘yz__*-m‘rﬂ—/ (H V)l < M2
* 2|* e -v)r v e - M flmitv) e et
e e VR e (i) [ (e )R v (5.2
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The limiting value of '_i_?é along the hyperbola « v =30 is

zero off wing and constant =¢/ (. ) ron the winge So it is contimous

across the curve « ¢ =350 a;i" isy however, discontinuous
across the midchord, All these have been used as a check for the
numerical resulte

The numerical data and the computation procedure are

similar to those for % ‘e

Coak ! = 1ol x
,//+ Y+ = dax
the principal branch of f, 7 x is usede In fact, much of the
computed result for %’ can be taken over, and so the labor of

calculation much reducede

Fige 8, 9 present tlhevresult of J, '/u,v) and ]‘é—' t, V) o
(563) Graphical Integration of [ {74! ang f {75}

_ v,

. JZ 7T / Vi-u' ]

i.ee 2 7L v ) | [ o ] ,
]M‘czU fu'(utv2) Ui [ Gmar™ dymar | oM

gy

Since potentials in regions ¢ and D enter into the expressions
for 1ift and drag only as 75[2 a), we are concerned, therefore,
only with those poimts (.«(,, v7) along the traiiing edge X =24 o
For numerical computation, we choose the fo]lowiné four pointss
(M,,‘f/) = (139,284, 9), (/7. 284, 11), ( /.5'..284, /3),
C/0/z, 10/z)
For the last poimt at tip, the limit of the integral converges to

(Refo 3)3
ﬂ];( (102, /0/5) ol - WJJ (10/7, 102)- d
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Writing the imtegral in the form

':Zotakj“/"‘ —Z /vt(u \/'//J*‘j‘t: [—T/_—,*J‘_—L, oA
’ )’0/;/' ) / / - U AN
v, f p
— («,vy) aua’
_—/ { \//"(/ ‘ ’ *._!
0 ("(/’b(’)\/[/,,b{/
, (5429)
/ Vi) du! L
=21V / LN TS
o, (u,-u)/u -u! ¢ g ]
+ %,
* 5 T e )
€=-o0./0, e get
/ u—r—)—”*éi"ifv/v,-./ v.)
_ N (u, VO,
“21 Ju,~v, | S0/, (530)
#. 092 7@:02
5
The error involved will be of the order € "2 = o. 003 o

After the point («,. V) was chosen, we simply have to

form the integral

) \/;.'/44//’/7) (4’: 0(,0[‘)
(L( ’U/)¢V/ -4/ .
over ghe interval ( = Y -0, /o ) on the diaphragm off wing,

with J;( (!, Vi) and):y/u’,w,) known from (6.1)s The

graphical integration is performed by using a planimeter. The
' ] o

last correction term -2 i‘“ is approximated by

The result is plotted in Fig, 10.
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(5.1;) Graphical Integration of‘
“rdy [T
//z+ﬁf5j ,/, T A=
/
I, 1 J] /;‘:,i’:: JR

It is seen that the second integral is contained as a part of the

and

first integral, and can easily be sepéral; ed from the first at the
last step of integration. The values ], andJs have been computed
in (6:2). |

The integrals are‘evaluated graphically for points ( «+t¢,, V7 )3
(10/2, 19/2), (15.284,13), (17.28L,11), (19.284,9) in region D,
and (21.284,7), (22.28l4,6), (23.28L,5), (2L428L,L) in region C

for which the second integral disappears and the first reduces to
A u Ju, & AV
Sy \/(x,—“ J/ v, -V .
In each of the stripwise integration with respect to v-and <«

the same technique as explained in (6.3) is adopted for the

neighborhood of the siﬂgular point. Results are plotted in Fig. 11,12,

(6.5) Computation of — .0:3/"'“’) af
’ Sz
. .
As shown in Part I; A(L), ()

For region (B)2 and C

(1) ’
[ ps8 = [ L e = et

(Z/

(x—ﬁ)j

(5.31)

_ﬁ——["?A + la-x+fg) + (x—a)]- o
L [Ha o aox ey ~rx-as] T

For region D
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“ Tua’ o
el = n] - —‘,f—f[M;iL?v“ﬁ]df ]
. N {y _pa
”/“’ o (o %" /45 -0 7 ) (5.32)
=‘/3£[«,-T/5 ~FC tpy]ow
_1[77'3 —we gl
A = /a —//‘7 i]dj
-‘-[co—»? ]ﬂ;fx.w—."ﬁ’,«_/x 24)
8=/M:L Z)d;
¥t LE 4 pred
A -8

—(7-2) 417, f:a /,’74,4””"‘ —¢
C

A

and 0;5: =o+d, 0?30)——— o« ~dJ are noted,

Mong 7 = ,
- /f Tag MlOAS = —/-—] oL * 1’[-— —a].d

By putting d = © and d1anging the sign of o in - f Yup /"(")“’5‘

we get - [ O, (d '
g '/-:“IMT H J‘

The points (X, ) computed ares x =20; < =0, 1.615,
lokbl, 7.272, 10.101, 11.515, 12,929, and 1L.343. The results are
shown in Fig. 13.

(506) Computations of —/‘/J‘ (G;R—O:(T)/J/O) as
Pron Part T, (14), with o0l 2on 6 €T 205

we haves

for region X c

’5[({”5 LIPS = splry -1, = 5a 45T (5.33)
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for region D

]

/ iv) (), / :
y /ff% G I = 20,0 DI, = (%) ]
z

‘ ¢ / | ZITRINY

1, = XM—@ ‘/‘29([4:,/%2_ *ﬂ}’w"{’/ﬁ?—;— —2\/?7\/:0/; - ‘ZC/‘?(

= 5 8 ey i ) et ol ]
#2x [tz [F -1l [52 o | =2 [ 737 -Iea7 |

The same set of points on the trailing edge as in (6.5) is

usede The result is shown in Fig, 1.

(5.7) Computation of Potential in Region B; and Bé

The potentials outside of tip interaction region (C and D)

are
74 174 o -
ﬁar=‘7Tr1057/‘/°)dff2—7—7£/2{)[@7 UZMB]&?’J'
U 69
%g::—/f‘zqﬁ/lfa)df—;‘/J‘/((O)[d‘;?—g zuB/df 7 %4 v
. I Zp
e b
g Y apee (50
= E/ €2} 2~y .Jfr"’ 0““))["
ng 1 U:lB +ﬁ,{TI/+ﬁ w 9T 2]
(see Part IA(8)),
i) hr%_, ic@ey, 9< X<, L' =L"=0, e
; - Lfd_ ) __ _(_f{
ur b/ A1 — 7 0(4"-0')
1% ) 19
ber=a Gr = (et d) (5.37)

& Gur = ([ peoms]-w = [ [purs] €
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7 de - — [/j“[/:/o)d\g'].y - [/f,z:/o/a/f’ 4.214;:(0) df]'d' (5.38)

Now, with A =/
///o)o/_]’ = 7T x + 2/; x- g —zq&a,;"\/%‘}

g
Za (5.39)
5’4/«@,11’ = —\{;‘/x-; + x /fa;'/’;_”?,c-zi; M'/%
74 40
X
. (
soin  Fd =gk, ggﬂ('/[,}f (e=rmz, ar) (541
T . ar 1) 7 o
[ —-/J‘L:{(‘O)df 51%47 - foﬂ( saf
: (5.42)
T () rodf o = —f Hddf - L [ utr03ad
z = -[ N Mtoddf
v8 Sra v SﬂMB 4‘— fli
B, etey are in analytic forms, i oo
ii) For By, i.e., a< ¥<z2a , /57 > [oa—av
IL/=7m I,’=0
:z (Z} o) _ \1|1-|(1‘tll77
bep = m(Tug'> %) =@ SIR 0 sas)
T — . [ DAL — 5L [ Mtorof ' N
U%T 0(/]“1/: I Jzé,«‘)}’ \’/
i
T e = o[- //:)/w'f ffw)a/fj
+d- / fﬂ(a)df~ -fﬂ/o)df fﬂludi’] (5.hk)

fI (1)

WADC TR- 52-276




v

where, with

2 [pds = =Tjlig +x [T 4 L pent
Zp

” / I~/¥

J A = 7 aq 25 %7 -2 x L[5l

I

[ HOd) = 7 (x-a)

!/

(d 4
So Cftﬁg) and qg)_are again analytic.
The limiting values of these integrals on the boundary

separating A and B are

(15 tod S = lorss Mol S = 774
SIS = '

y/:;n'lélfzfzo)df = 4 7/_/;»; /‘I./x./c)dj‘z T (y-a)
which check the computed resultse

In the computation, the integrals such as (5.37), (5.38)
etc, are first evaluated, then ¢, T{ ) (a) etce The computations
are made for points (¥, iz) as follows:

for ;ﬁ/Qa): X=20o

J =/300, 262 -20, 27JZ 20, 20.
for Pla): A =/6 '
' S = 0L 415, #FIE, 7202

The point (20, /300 ) 4s the intersection of hyperbola .« v = 50
and the trailing edge ¥ = 24 = 20 . Results are plotted
in Fig. 15, 16.

(5.8) Computation of Potential For Al and A,

’ForAl': %%‘r: d./fz/uo),,/y = nxAa (5.45)
o = - / = - J

WADC TR 52-276 ~51- ’ ' (5.146)
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For A23

Ulsvu-r - af,{/o) ,{J“ = 7y (50h7)
5 fa = ol s S L Qusies - w2
= /- /”/j/o)od‘ + ﬂrc)o/y o
(5.148)
- /f/«ro) n ,«rc)w] J
r/)
= —(za~X)mwo -7t XJ
So
{or) 7w (X)
2 Pray. B en W= Py @ = G =
v .7T (a2 ’ (50’49)
Iy Ky (4) = O
7, T
ar ‘ U¢U3 (zq) = v Tur (2a) =
B—(sza): - ) (ot ) (5.50)
Z o l2a) =Py (ra) = =287

(5.9) Resume of Results of Computation

The results of computation for potentials in region D and
C are combined according to (5.6), (5.7), (5.8), (5.9), (5.10)
(5.11) etc. to give the final form of potentials, i.e.

Py 12 = %-{Mﬂ). o %"‘Ou) >l

where 4t = w7, U3 ; @ X=4a, 2a
The resultant ¢. 7v)etce are plotted in Fig. 17.

Finélly, the functions

D) (an) - P (za)

ur

'S ‘(0"/
%r; ‘t2a) - 2 %{g ‘a)
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aré computed for points along the span over the tip region,

from y =oto 7= Va a/ﬁ = 20 s and therefore the contributions

by the angle of attack o and the thickness ratio J on 1lift and
drag along the span are obtained, as shown in Fig. 18.

Integration by planimeter gives

(X) el

Lo
/o /ZT/ZO) _990{8)/20)/]9’/ — 173/_ o

-2 0
S 58 s 8 )y = 1292
° ¢ ‘ ‘

So in (503) and (Soh)

[ 73/.0
== 2, 32
/oo 4 (5.51)
.5 = /i‘—‘*fjgz = 0. %//3
(5.52)
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Ce RESULTS AND CONCLUSION

From the result s of computation, it is obtained that

L =2.327

5 = 0. %113
Thus the 1ift and drag coefficients of a Busemann biplane with
chord length 2q, span 256, wedge angle 4 at Mach number A1,

and angle of attack o/ are given by (L.h), (4.5) and (L.6) as

follows:
[, =2 = = [« R +2L-8Jo = ~ [4pR -3 344]ot
LT dab©  pRUF par R ' (1)
. D Y - ) - .
Cp =4ab'<§7= ﬂ‘/}?[/4/24?+ 2,.-8)x "+ ZD-J]

/

ol

//4F/Q -—3.346)0/11'- . 523 6'1_7 (2)

Z;, - L d
4%»4?-3.346 o

(3)

where . 3 =%, R =L/,

*t)
Figure (19) gives t a plot for- C‘-/o( (which is also (v /o(")
against Mach number M with different aspect ratios. Figure (20)
(5
gives the same plot for (o / 5% Thus, for any given aspect
ratio of the biplane at a certain Mach mumber, (. and Co can

immediately be obtained from the cur?j; by following relations:
(e ’ . (o > Y
C/.=(7)'°( CD=I %)'O('*[%T')‘JL
Figure (21) gives a plot of L/D against LR for different

9/ = ratiose
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The limiting case of the present theory occurs when
ie€ey B AR = 2 , in which case the two iip Mach cones on same
wing meet, These limiting cases are either given in plots by the
point ® , or indicated with incorporated tables, It may further
be mentioned that these limiting cases lead to a unique result

for L/D ratio as followsi

(%), =&t
Dé/;nlat oA /+0/77 ff’—/u)L

From the computed result, it is easily seen that a Busemann

biplane of finite span highly approximtes a flat plate, as the

wave drag due to wing thickness is inherently iow.
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